PREPARATION AND ANTIBACTERIAL ACTIVITY OF A SERIES OF 6α-METHOXY PYRIMIDINYLUREIDOPENICILLINS

Sir:

Recent publications^{1,2}) have again highlighted the potent broad-spectrum antibacterial activity of sodium 6R-[(R)-2-[3-[2-(4-aminosulfonyl)anilino-4-hydroxy-5-pyrimidinyl]ureido]-2-(4hydroxyphenyl)acetamido]penicillanate (1). One weakness of this class of compounds is their lack of stability to bacterial β -lactamases. Earlier work in these laboratories³⁾ demonstrated how the introduction of a 6α -methoxy group into penicillins gave good stability to these enzymes, although in the case of acylamino penicillins (e.g. piperacillin) this was usually accompanied by a dramatic loss in overall activity. We wish to report the synthesis and antibacterial activity of a series of 6α -methoxy analogues of 1.

The protected D or DL amino acids⁴⁾ ($2a \sim g$; $X=NO_2$, h; X=H) were coupled to benzyl 6β -amino- 6α -methylthiopenicillanate⁵⁾ (3) using

either acid chloride $(2a \sim g)$ or *N*,*N*⁻dicyclohexylcarbodiimide (2h) activation (Scheme 1). For the 2-thienyl examples (2f and g) the DL amino acid derivative was coupled and the diastereoisomers separated by chromatography. The 6α methylthio group was displaced by methoxy using mercuric acetate in MeOH, followed by hydrogenolysis to give the amino penicillins (4a ~ h). Reaction with the *N*-carbonylchloride (5) gave, after sodium salt formation, the required pyrimidinylureido 6α -methoxypenicillins (6a ~ h).

The *in vitro* activity of **1** and the 6α -methoxy derivatives is shown in Table 1. The 6α methoxy analogue (**6a**) of **1** showed excellent stability to various β -lactamases, including the R-TEM enzyme as produced by *Escherichia coli* JT4. The MIC values for β -lactamase producing strains were similar to those for non-producing strains. Intrinsic activity was reduced particularly against Gram-positive organisms, and, in most cases, against *Pseudomonas aeruginosa*. Variation of the substituent R led to a series of 6α -methoxy penicillins (**6b**~h), all stable to β -lactamases, but with a markedly

* Protected as benzyloxycarbonyl

Table 1. Antibacterial activity of 1 and its 6α -methoxy analogues (MIC (μ g/ml))^a.

H ₂ NO ₂ S - NH - NHCONHCHCONH - S									
	COONa								
*	1	6a	6b	6c	6d	6e	6f	6g	6h
	D	D	D	DL	DL	DL	D	L	DL
				AcQ	F				
R	но-	но-	\bigcirc	Aco-	\bigcirc	F-			
х	Н	OCH_3	OCH_3	OCH_3	OCH_3	OCH_3	OCH_3	OCH_3	OCH_3
Escherichia coli NCTC 10418	0.25	1.25	2.5	≤ 0.06	0.5	10	1	2.5	0.5
E. coli JT4 ^b	>100	0.5	2.5	≤ 0.06	1.25	10	2.5	2.5	1.25
E. coli JT425°	10	2.5	2.5	1.25	1.25	25	1	2.5	10
Pseudomonas aeruginosa NCTC 10662	2.5	25	50	1.25	10	>100	10	50	25
Serratia marcescens US32	2.5	5	10	2.5	2.5	25	2.5	10	5
Klebsiella pneumoniae A	10	0.2	2.5	≤ 0.06	0.25	10	0.2	1	0.12
Enterobacter cloacae N1	0.5	1.25	2.5	2.5	1.25	25	0.5	2.5	1
Proteus mirabilis C977	0.25	1.25	2.5	2.5	1.25	10	1	2.5	2.5
P. mirabilis 889°	>100	1.25	1	2.5	0.5	10	0.5	2.5	1
Staphylococcus aureus Oxford	1	50	10	>100	10	50	10	25	25
S. aureus Russell ^b	>100	50	10	>100	25	50	10	25	50
Enterococcus faecalis I	2.5	>100	> 100	>100	>100	>100	>100	> 100	>100

^a Determined by serial dilution in nutrient agar containing 5% defibrinated horse blood, inoculum 0.001 ml of an overnight broth culture (approximately 10⁸ cfu).

^b β -Lactamase producing strain (plasmid-mediated).

^c β-Lactamase producing strain (non-plasmid-mediated).

VOL. XXXIX NO. 3

different antibacterial spectrum.

Thus, the excellent Gram-negative activity of **6c**, including *P. aeruginosa* is offset by the total loss of Gram-positive activity. In contrast **6f**, whilst showing a slight loss of activity against Gram-negative organisms retains, in common with **6b**, a moderate level of potency against *Staphylococcus aureus*.

Acknowledgement

The authors gratefully acknowledge the assistance given by Dr. M. J. PEARSON and Dr. D. J. MERRIKIN during the preparation of this manuscript.

> Desmond J. Best* George Burton Frank P. Harrington John Lowther

Beecham Pharmaceuticals, Research Division, Brockham Park, Betchworth, Surrey, RH3 7AJ, United Kingdom

(Received October 4, 1985)

References

- LECHNER, U.; K. R. APPEL & R. G. WERNER: 6*R*-[(*R*)-2-[3-[2-(*p*-Aminosulfonyl)anilino-4hydroxy-5-pyrimidinyl]ureido]-2-(4-hydroxyphenyl)acetamido]penicillanic acid, sodium salt (VX-VC 43), a new broad spectrum beta-lactam antibiotic—Antibiotic activity *in vitro* and *in vivo*. Arzneim.-Forsch./Drug Res. 35: 351~ 355, 1985
- WETZEL, B.; E. WOITUN, W. REUTER, R. MAIER & U. LECHNER: Synthesis and antibacterial activity of pyrimidinylureidopenicillins. Arzneim.-Forsch./Drug Res. 35: 343~348, 1985
- 3) BURTON, G.; M. J. BASKER, P. H. BENTLEY, D. J. BEST, R. A. DIXON, F. P. HARRINGTON, R. F. KENYON, A. G. LASHFORD & A. W. TAYLOR: Preparation and structure-activity relationships of some 6α-substituted penicillins. J. Antibiotics 38: 721~739, 1985
- 4) BEST, D. J.; G. BURTON & F. P. HARRINGTON (Beecham Group plc): Penicillin derivatives and compositions containing them. Eur. Pat. Appl. 91,755, Oct. 19, 1983 [Chem. Abstr. 100: 85501v, 1984]
- JEN, T.; J. FRANZEE & R. R. HOOVER: A stereospecific synthesis of C-6(7)-methoxypenicillin and -cephalosporin derivatives. J. Org. Chem. 38: 2857~2859, 1973